Atomic Layer Deposition of High-*k* Gate Dielectrics on Germanium and Silicon Substrates

O. Bethge, S. Abermann, Ch. Henkel, and E. Bertagnolli Institute for Solid State Electronics, Vienna University of Technology, Floragasse 7, 1040 Vienna, Austria

Al₂O₃/ZrO₂/Al₂O₃ high-k dielectric stacks are grown on Germanium and Silicon substrates by Atomic Layer Deposition at temperatures of 110 °C, 150 °C, 200 °C and 300 °C from trimethylaluminum (TMA) and tetrakis-(dimethylamino)zirconium (Zr(NEt2)4) precursors with water. The stacks are investigated and compared in terms of deposition temperature and Ge-substrate preparation. As a result, we show that in general the deposition of the stacks at lower temperatures (150 °C) leads to lower leakage currents in the range of several orders of magnitude. The deposition on GeOx-free Ge-substrates, obtained by HBr-etching, yields much higher breakdown voltage of the high-k oxide.

Introduction

Aside from silicon, germanium is an attractive material in downscaled Complementary-Metal-Oxide-Semiconductor (CMOS) devices due to its high electron mobility and its low dopant activation temperatures. The fact that Ge does not offer a stable natural oxide is no more a disadvantage over Si. For the extrinsic ultra thin dielectric layers envisaged for future CMOS-devices, Atomic Layer Deposition (ALD) is the favored deposition process for high-k dielectric materials like hafnium dioxide (HfO₂) or zirconium dioxide (ZrO₂). For the deposition process, alternative semiconductors as well as novel device architectures issues a lowering of the deposition temperature well below 300 °C.

Electrical and structural characterization of ALD triple stacks of $AI_2O_3/ZrO_2/AI_2O_3$ (AZA) on Si grown by a chlorine-based (ZrCl₄) chemistry for ZrO_2 deposition at temperatures of 300 °C have already been performed [1]. However, residual chlorine content in the ALD films leads to increased oxide charge concentrations and interface states, if deposited at lower temperatures [2]. Only a chlorine-free metal amide precursor seems to be favorable for a low temperature deposition with satisfactory electrical characteristics.

In this work AZA triple layers grown by ALD on Si and Ge from a chlorine-free precursor system at deposition temperatures ranging from 110 °C to 150 °C are compared with dielectrics deposited at the usual higher temperatures ranging from 200 °C to 300 °C in terms of their applicability in nanoscaled MOS devices. In order to explore the thermodynamical stability of the as-grown oxides, different Ge surface pretreatments and post deposition annealing steps are applied. The morphology is verified by High-Resolution Transmission Electron Microscopy (HR-TEM) analysis. MOS capacitors are used to characterize the electrical performance referred with film stack structure and morphology.

Experimental

Sample Preparation

Silicon

As substrates, boron (p)-doped, (100)-oriented Si wafers with 1 - 5 Ohm·cm sheet resistance have been used. After ultrasonically enhanced Piranha- and RCA-type cleaning, all substrates were exposed for 10 min to a 2% HF solution to remove the native SiO₂ layer from the substrates. Immediately prior to deposition, a short H₂O-rinse or a variable exposure of 10 min has been applied.

Germanium

Here, antimony-doped (100)-oriented n-Ge wafers with 6 – 10 Ω ·cm sheet resistance have been used. All substrates were exposed for 3 min to one of the following wet chemical treatments to remove the instable native GeO_x:(i) 20-% HCl-solution with cyclic 35%-H₂O₂-rinse (HCl <—> H₂O₂), (ii) 20-% HCl solution with incorporated 1% H₂O₂ solution (HCl+H₂O₂) and (iii) 48-% HBr solution (HBr). A short H₂O rinse and a subsequent N₂ blow has been applied to remove chemical residuals.

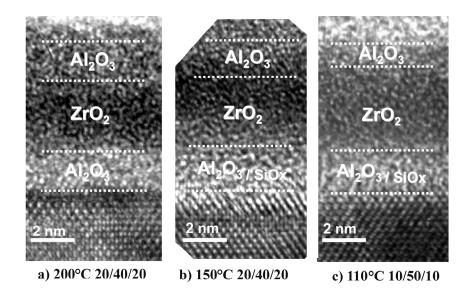


Fig. 1: HR-TEM of Al₂O₃/ZrO₂/Al₂O₃ stacks deposited at (a) 200 °C, (b) 150 °C and (c) 110 °C on Si substrates.

The high-*k* oxide stacks have been grown in a Savannah 100 ALD reactor from Cambridge NanoTech Inc. The substrate temperatures during ALD growth have been set to 110 °C, 150 °C, 200 °C, and 300 °C, respectively. In order to achieve a reliable layer by layer growth, we applied purging times from 3 seconds to 90 seconds. Three different dielectric stacks have been deposited: (i) 70 ALD-growth-cycles of pure ZrO₂ (0/70/0), (ii) stacks composed of a 10 ALD-growth-cycles Al₂O₃ at the bottom and at the top of a 50 ALD-growth-cycles ZrO₂, respectively (10/50/10), and (iii) stacks corresponding to 20 ALD-growth-cycles Al₂O₃ at the bottom and at the top of 40 ALD-growth-cycles ZrO₂, respectively (20/40/20). After oxide deposition, a Post Deposition Annealing (PDA) in inert, reductive, and oxidative atmospheres, respectively, has been applied for a duration of 5 min at 400 °C. In order to complete the MOS capacitors, circular aluminum (Al) electrodes with diameters of 100 μ m have been fabricated by sputter deposition and patterned by photolithography involving a lift-off technique.

Morphology

In Fig. 1 a morphological analysis from HR-TEM of 10/50/10 stacks deposited on Si at 110 °C and 20/40/20 stacks deposited at 150 °C and 200 °C with similar total thickness of about 6.9 nm to 7.0 nm is shown. The images indicate contiguous amorphous ZrO_2 and Al_2O_3 films even at deposition temperature of 200°C. Samples deposited at 200 °C exhibit no interfacial SiO₂ whereas samples deposited at 150 °C and at 110 °C most likely exhibit SiO₂ or mixtures of Al_2O_3 and SiO₂ at the oxide/semiconductor interface. These oxides may have two origins, (i) a partly fragmentary, not fully contiguous Al_2O_3 bottom layer, and/or (ii) much longer purge times during the ALD growth at lower deposition temperatures strongly increase the process time, and therefore enlarge possible diffusion times for oxygen, which may lead to a stronger SiO₂ growth at the Si/oxide interface. In both cases, oxygen may be able to diffuse through the ZrO_2 matrix during the oxide growth process and to oxidize the Si surface. In the case of the 10 ALD-growth-cycle process, the Al_2O_3 layer is most likely not contiguous due to the previously mentioned inhibited growth, and therefore the oxygen is able to diffuse easier to the dielectric/ Si interface to form an interfacial SiO₂ layer.

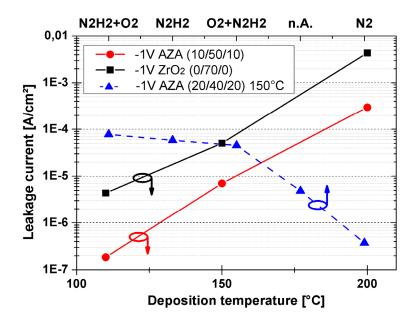


Fig. 2: Impact of the deposition temperature and PDA on the leakage current of the various high-*k* MOS-capacitors at -1 V gate bias.

Electrical characterization

As an important result on Si substrates, it can be seen that lowering of the deposition temperature from 200 °C to 110 °C yields lower gate leakage currents of about 3 orders of magnitude, as shown in Fig. 2. As mentioned above, this is most likely to longer purge times at lower deposition temperatures, which may lead to a stronger SiO₂ growth at the Si/oxide interface.

The *I-V* measurements of AZA stacks on Ge substrates, shown in Fig. 3, indicate that lowering of the deposition temperature from 300 °C to 150 °C yields lower gate leakage currents of about one order of magnitude. Here, similar explanations are presumably: Much longer purge times during the ALD growth at lower deposition temperatures enlarge possible diffusion times for oxygen, which may lead to a stronger GeO_x regrowth at the Ge interface. All dielectric stacks exhibit a breakdown in the range of 3 to

4 gate bias, except of the samples with HBr pre-treatment, where the breakdown occurs not until bias has been driven to ~6 V. We believe that this remarkable result is correlated with a complete removal of the sub-oxide through HBr, as reported. In the same way, it has been reported for Si that a thin interfacial SiO₂ layer is the origin of breakdown of high-k dielectric stacks [3].

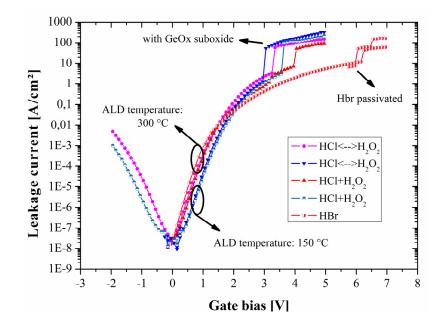


Fig. 3: Leakage current measurements of the Al/oxide/n-Ge MOS capacitors with AZA 20/40/20 dielectric stack as oxide, deposited at 150 °C and 300 °C.

Conclusion

In conclusion, dielectric stacks grown at low temperatures are suitable to design high performance MOS devices, exhibiting well-behaved electrical characteristics and low gate leakage currents. Therefore, the "low temperature" process appears applicable for lift-off processes involving resist polymers, or for the deposition on alloy heterostructures, making it potentially attractive for scaled CMOS device applications.

Acknowledgements

This work is funded by the Austrian Science Fund (FWF), project No. P19787-N14. The Gesellschaft für Mikro- und Nanoelektronik, GMe, as well as the Zentrum für Mikro- und Nanostrukturen, ZMNS, are gratefully acknowledged for support.

References

- [1] D. Kil et al., Symposium on VLSI Technology Digest of Technical Papers, (2006)
- [2] W. Chen, Q. Sun, M. Xu, S. Ding, D. Zhang, L. Wang, J. Phys. Chem. C 111, 6495 (2007)
- [3] M. Rafik, G. Ribes, D. Roy, G. Ghibaudo, 15th Workshop on Dielectrics in Microelectronics, Berlin (2008)