

An Object Oriented Approach to the
Management of Models

R. Mlekus and S. Selberherr
Institut für Mikroelektronik, TU Wien

A-1040 Vienna, Austria

The object oriented Model Definition Language (MDL) for the selection and defini-
tion of algorithms or models is presented in this contribution. A number of basic
algorithms and parameter types provided by the Algorithm Library can easily be
extended by user defined algorithms and C++ classes describing new parameter
types. MDL allows to add and/or modify new model algorithms of simulators by
defining them on the input deck without recompilation. Model algorithms stored in
object libraries or input deck libraries can easily be used by several independent
programs.

1. Introduction
Almost any simulator has to provide the functionality to choose from different algo-
rithms or models specialized for solving specific problems dependent on the actual
simulation task or user commands. To support model developers in continuously
improving these simulators by adding new model algorithms, it is essential to separate
these models from the rest of the simulator code and to provide a simple modular
mechanism to define, test, and archive them. Therefore the Algorithm Library was
developed, which provides an object oriented approach to the programming and han-
dling of model algorithms and the Model Definition Language (MDL). These algo-
rithms are stored in libraries of object files or ASCII files containing input decks and
can easily be reused by other programs or as parts of other algorithms. Automated
extraction of log- files and debug information and a report containing information about
available algorithms and their documentation is supported.

2. Model and Program Structure
Algorithms provided by the Algorithm Library are represented by C++ classes derived
from the base class “Model” or its subclasses representing various specific model types
[1]. The thereby defined inheritance tree is used to classify the various model algo-
rithms and for run time type checking of expressions defined on the input deck. Model
classes encapsulate the algorithm itself, private data values used to evaluate the algo-
rithm, an interface containing the required input and output parameters, and the docu-
mentation.

New parameter types can be instantiated by specializing the template class
“Parameter” with an arbitrary C++ class describing the parameter value. This
parameter class contains a reference to its value, a default value, the name and the
documentation of the parameter. Methods to link several parameters together manage
their value references to point to a value shared between them including a run time type

 53

R. Mlekus et al. 54

check. For each of these parameters a set of operators and functions can be specified
which can be used in calculations defined on the input deck as well as in algorithms
defined in C++.

A different approach to support the development of models is presented in [5], where
the modeling language PMDL is introduced. The PMDL compiler provides a subset of
the C language extended by data types and expressions dealing with mesh data and the
automated generation of the Jacobian matrix. In distinction to this the Algorithm
Library is designed to support libraries of arbitrary user defined data types and algo-
rithms without any specialization.

A basic set of predefined algorithms and parameter types providing all standard C++
data types and basic operations on them, is already provided by the Algorithm Library.
These can be extended at any time by additional user defined libraries of further algo-
rithms and parameter types or by using the Model Definition Language.

An instance of a specific algorithm can be generated by forwarding the model type
name to the Algorithm Library or by giving an instance name for the algorithm. In this
case the actual class type is determined at run time by parsing the input deck. To evalu-
ate the algorithm, its class instance is connected to an interface providing the necessary
parameter values.

A minimal program using the Algorithm Library to evaluate a single algorithm may be
structured as following:

1. Initialize the Algorithm Library by parsing the input deck.

2. Create the interface containing all parameters and the required model type.

3. Request a model instance from the Algorithm Library and link it with a specified
parameter interface.

4. Repeat as necessary: Compute the values of the input parameters.
 Evaluate the model.
 Use the resulting parameter values for further computations.

5. Delete the interface and the model instance.

Steps 1–3 should take place during the initialization phase of the program because they
require the rather time consuming parsing and interpretation of the input deck. Once the
internal data structures of the Algorithm Library are assembled, the additional time con-
sumption caused by the usage of the Algorithm Library are typically between 5 – 50 %
depending on the complexity of the models.

3. Model Definition Language
The Algorithm Library contains a parser for the Model Definition Language which
allows to:

• Define the actual algorithms to be used for a specific task.

• Define the default parameter values of a certain model instance.

• Define global parameters.

An Object Oriented Approach to the Management of Models 55

• Define new algorithms consisting of previously defined models and calculations with
global and local parameters. Arbitrary loop and condition expressions can be
expressed by using special model classes.

• Request a report describing all available algorithms, their interfaces and the thereby
defined model hierarchy.

• Request a report describing the actually used algorithms and/or parameter values for
a specific model instance.

4. Example
To give a short example for the usage of the Model Definition Language, a simple car-
rier mobility model is defined by combining a lattice scattering model with a carrier-
carrier scattering model using the Mathiessen rule. The interface for all carrier mobility
models (class name MobilityModel) contains among others the parameters temp
(lattice temperature in []), mu (the resulting carrier mobility in [cm]) and np
(the product of the electron and hole densities in [cm

K
2 V −1s −1

−6
]). It is assumed that an abstract

class MobilityModel which defines the interface for all carrier mobility models and
the following simple lattice scattering and carrier-carrier scattering models are already
contained in a Model Library or defined in a previously scanned input deck file:

Lattice Scattering [2]:

mu = mu0 ⋅
temp
300

⎛
⎝

⎞
⎠

− alpha

Carrier-Carrier Scattering [3]:

mu =
1.428 ⋅1020

np ⋅ ln 1 + 4.54 ⋅1011 ⋅ np()−1/ 3()
Listing: Input deck defining a new carrier mobility model for electrons

CombinedModel LC_Mobility : MobilityModel {
 Model LatticeScatteringMobility "LSMob";
 Model CC_ScatteringMobility "CCSMob";

 // new default values for some sub models
 Parameter " LSMob"."mu0" = {{1448}};
 Parameter " CCSMob"."alpha" = {{2.33}};

 link Interface."temp" to "LSMob"."temp";
 link Interface."np" to "CCSMob"."np";

 calc "MatthiesenRule" {
 Interface."mu" = 1/("LSMob"."mu" + 1/ "CCSMob"."mu");
 }

 EvaluationOrder "LSMob", "CCSMob", "MatthiesenRule";
}

// Specify the actual Mobility Model Type to use
Model "MobilityModel" = LC_Mobility;

R. Mlekus et al. 56

LSMob

"mu0"

"temp""Temp"

Interface of LC_Mobility

"mu"

LC_Mobi l i ty

"np"

"alpha"

"mu"

CCSMob

MathiessenRule

"np" "mu"

Fig. 1: Block diagram of the new carrier mobility model

5. Conclusion and future aspects
By using the model library a clean interface is introduced between modularized algo-
rithms and the rest of the program. These algorithms can easily be replaced by newly
defined ones during run time without any additional coding efforts within the simulator.
Due to the relatively low run time performance losses and the great simplifications in
introducing new algorithms into existing simulators, the Algorithm Library is a valuable
tool for simulator and model development and their daily usage.

Acknowledgment
The authors would like to thank Siemens AG, Munich, Germany, for the support.

References
[1] B. Stroustrup, “The C++ Programming Language”, Addison-Wesley 1986, ISBN

0-201-12078-X

[2] N.D. Arora, J.R. Hauser, D.J. Rouston, “Electron and Hole Mobilities in Silicon as
a Function of Concentration and Temperature”, IEEE Trans.Electron Devices,
ED-29 (1982), p. 292 – 295

[3] M.S. Adler, “Accurate Numerical Models for Transistors and Thyristors”, in
Miller [4], p 5 – 8

[4] J.J. Miller, “An Introduction to the Numerical Analysis of Semiconductor Devices
and Integrated Circuits”, (Dublin, 1981), Boole Press

[5] J. Litsius, “A modeling language for mixed circuit and semiconductor device
simulation”, Hartung-Gorre 1996, ISBN 3-89649-034-6

