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Photo-ESR on Self-Organized SiGe Islands 

Introduction 

Currently, there is much research activity on electron spins confined in zero dimen-
sional structures [1], as they present a promising candidate for future spintronic and 
quantum computation applications [2] – [4]. In III-V compounds, the high degree of con-
finement leads to a significant increase in spin relaxation times [2], [3]. Earlier, we in-
vestigated self-organized Ge islands embedded in a Si buffer in photoluminescence 
(PL) and electron spin resonance (ESR) experiments in continuous wave (CW) and in 
time resolved mode [5] and found a single ESR line with a g-factor of g = 1.998, corre-
sponding to electrons confined in the strained Si regions directly above the locations of 
the Ge islands [6]. This line appears only under the illumination with white light, which 
creates electron-hole pairs. The holes are localized inside the Ge islands, and the elec-
trons in the strained Si regions nearby. Transitions between these two states are ob-
served at 0.85 eV in PL experiments [5]. 

 

Fig. 1: ESR intensity as a function of wavelength/energy. A clear onset of ESR inten-
sity is observed at 1.05 eV. 
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Experiment 

During CW ESR at 2.5 K the sample is illuminated with monochromatic light from an 
optical parametric oscillator (OPO) source (details on the ESR experimental setup and 
the sample structure are found in Ref. [5]). At wavelengths around 1450 nm, corre-
sponding to the transition energy from the Ge valence band (VB) to the strained Si 
conduction band (CB) states at 0.85 eV, no ESR intensity is detected. We find a strong 
increase of the ESR signal in the range of 1300 nm to 950 nm, with an onset at 
1.05 eV, shown in Fig. 1. 

Results and Discussion 

The excitation from the Ge VB to the strained Si CB states at 0.85 eV in a photo-ESR 
experiment with monochromatic light is rather unlikely. For these transitions to occur, 
the OPO wavelength (energy) has to match the transition energy exactly, although 
there is a certain spread in transition energies due to fluctuations in Ge island sizes 
and locations [5]. 

Excitation from the Ge VB states above the band-gap, followed by relaxation into the 
strained Si regions, is much more probable. Such an excitation process is shown in 
Fig. 2. The observed onset at 1.05 eV appears quite realistic for it. 

 

Fig. 2: Schematic sketch of the band structure variation along growth direction, 
through the center of a Ge island. The excitation from the Ge VB to the 
strained Si CB states at 0.85 eV is indicated, as well as the excitation from the 
Ge VB above the conduction band, followed by a relaxation into the strained Si 
CB (dashed arrow). 

High Frequency Effects on a Si 2DEG 

Introduction 

Confinement of electrons in 2D structures, in particular in 2D electron gas (2DEG) in a 
Si/SiGe heterostructure has been extensively studied previously by us [7], [8]. We 
found that both the g-factor and the ESR line width are governed by the Bychkov-
Rashba (BR) effect, arising from a structure inversion asymmetry introduced by the 
one-sided Sb modulation-doping layer in these structures. In the low field regime, the 
BR effect manifests itself by an effective magnetic field BBR that is parallel to the 2DEG 
plane, perpendicular to the electron momentum. Recently, we reported on the direct 
observation of this BR field in the presence of an electric current that causes an addi-
tional contribution to the electron momentum vectors [9], [10]. When the sample is ori-
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ented in such a way that this BR field is parallel to the external field, it can be simply 
observed as a shift in the ESR line. Rotating the sample around an axis perpendicular 
to the external field gives exactly the expected anisotropy: the effect vanishes for 
BBR⊥Bext and is maximized for BBR||Bext. 

A high frequency (hf) current thus is expected to produce a hf BR field, which can be 
utilized directly for spin excitation and spin manipulation [11]. This effect is observed as 
an increase in ESR signal when the sample is moved towards a position where the 
electric mode of the resonator has its maximum [12]. 

Experiments 

This effect is observed indirectly in our sample structures as well [8]. The observed 
ESR signal is a complex superposition of three components: the antisymmetric absorp-
tion signal (AS), corresponding to magnetic dipole transitions in the sample at reso-
nance (the traditional ESR signal), the symmetric dispersion signal (DS), arising from 
the frequency dependence of the electric conductivity, and the antisymmetric polariza-
tion signal (PS) which appears due to the dependence of the conductivity on spin po-
larization. 
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Fig. 3: Amplitude of the DS component of the ESR signal as a function of sample ori-
entation with respect to the external field. The overall ESR line shape is shown 
qualitatively as insets. 

When the sample is rotated around the direction of the magnetic component of the mi-
crowave (MW) radiation inside the resonator, B1, perpendicular to the external field it is 
found that the ESR signal is mostly antisymmetric when the external field is perpen-
dicular to the 2DEG, and becomes more symmetric when the sample is rotated to-
wards an orientation where the field is in-plane (see Fig. 3). This is due to the finite 
dimensions of the 2DEG. The electric component of the MW radiation, E1, vanishes 
completely exactly in the center of the resonator only. For in-plane orientation, it is par-
allel to the 2DEG, which gives rise to hf currents, leading to an increase in DS ampli-
tude by a factor of ~30. When the 2DEG is oriented perpendicular to B1 (E1 in-plane), 
the DS amplitude is increased by a factor of ~100. 
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